
All Maths Formula In Hindi PDF Download
गणित के महत्वपूर्ण सूत्र पीडीऍफ़ – All Maths Formulas PDF In Hindi Download:- Today, we are sharing the Maths Formulas PDF in Hindi download for you. This Mathematics formula in Hindi pdf can prove to be important for the preparation of upcoming government exams like SSC CGL, BANK, RAILWAYS, RRB NTPC, LIC AAO, and many other exams. All Maths Formulas PDF in Hindi download are very important for any Sarkari exam.
This Maths PDFis being provided to you free of charge, which you can DOWNLOAD by clicking on the DOWNLOAD button given below, and you can also DOWNLOAD some more new PDFs related to this Maths Formula PDF In Hindi by going to the related notes. You can learn about all the new updates on PDFDOWNLOAD.IN by clicking on the Allow button on the screen.
pdfdownload.in is an online educational website, where we are sharing Maths Formula PDF In Hindi for free DOWNLOAD for UPSC, SSC, BANK, RAILWAY, LIC, and many other exams. Our General Science Questions PDF is very simple and easy to understand. We also cover basic subjects like Mathematics, Geography, History, General Science, Politics, etc. Our PDF will help you prepare for any SARKARI EXAM.
More Math Related PDF Download
Maths Topic wise Free PDF > Click Here To Download |
English Topicwise Free PDF > Click Here To Download |
GK/GS/GA Topicwise Free PDF > Click Here To Download |
Reasoning Topicwise Free PDF > Click Here To Download |
Indian Polity Free PDF > Click Here To Download |
History Free PDF > Click Here To Download |
Computer Topicwise Short Tricks > Click Here To Download |
EnvironmentTopicwise Free PDF > Click Here To Download |
UPSC Notes > Click Here To Download |
SSC Notes Download > Click Here To Download |
Algebra Math Formula बीजगणित सूत्र
- प्राकृतिक संख्या (Natural Numbers) – an – bn = (a – b)(an-1 + an-2 +…+ bn-2a + bn-1)
- सम संख्या (Even) – (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
- विषम संख्या (Odd) – (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
- (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
- घातांक के नियम (Low Of Formula Exponents)
- (am)(an) = am+n
(ab)m = ambm
(am)n = amn - a2 – b2 = (a – b)(a + b)
- (a+b)2 = a2 + 2ab + b2
- a2 + b2 = (a – b)2 + 2ab
- (a – b)2 = a2 – 2ab + b2
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
- (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
- (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
- (a – b)3 = a3 – 3a2b + 3ab2 – b3
- a3 – b3 = (a – b)(a2 + ab + b2)
- a3 + b3 = (a + b)(a2 – ab + b2)
- (a + b)3 = a3 + 3a2b + 3ab2 + b3
- (a – b)3 = a3 – 3a2b + 3ab2 – b3
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
- (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
Trigonometry Math Formulas
» ѕιη0° =0
» ѕιη30° = 1/2
» ѕιη45° = 1/√2
» ѕιη60° = √3/2
» ѕιη90° = 1
» ¢σѕ ιѕ σρρσѕιтє σƒ ѕιη
» тαη0° = 0
» тαη30° = 1/√3
» тαη45° = 1
» тαη60° = √3
» тαη90° = ∞
» ¢σт ιѕ σρρσѕιтє σƒ тαη
» ѕє¢0° = 1
» ѕє¢30° = 2/√3
» ѕє¢45° = √2
» ѕє¢60° = 2
» ѕє¢90° = ∞
» ¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
» 2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
» 2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
» 2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
» 2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв – ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
Trigonometry Math Formulas :-
» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
» α = в ¢σѕ¢ + ¢ ¢σѕв
» в = α ¢σѕ¢ + ¢ ¢σѕα
» ¢ = α ¢σѕв + в ¢σѕα
» ¢σѕα = (в² + ¢²− α²) / 2в¢
» ¢σѕв = (¢² + α²− в²) / 2¢α
» ¢σѕ¢ = (α² + в²− ¢²) / 2¢α
» Δ = αв¢/4я
- » ѕιηΘ = 0 тнєη,Θ = ηΠ
- » ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
- » ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
- » ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
Algebra Formulas
- \(a^{2}-b^{2}=(a+b)(a-b)\)
- \((a+b)^{2}=a^{2}+2 a b+b^{2}\)
- \(a^{2}+b^{2}=(a-b)^{2}+2 a b\)
- \((a-b)^{2}=a^{2}-2 a b+b^{2}\)
- \((a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c\)
- \((a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 a c+2 b c\)
- \((a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\)
- \(a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\)
- \(a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\)
- \((a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} ;(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\)
More Math PDF Download
- Abhinay Sir Maths Class Notes and Book Pdf [2022] Download
- Math Class Notes PDF For All Competitive Exams
- Vedic Maths Book PDF Download In Hindi
- Advance Maths Book PDF in Hindi
- Vedic Maths Book PDF In Hindi For All Competitive Exams
- Maths Formulas For Time and Distance
- Current Affairs In Hindi PDF
- General Science Questions For Competitive Exams Pdf
- Mathematics Tricks in Hindi PDF
- GK Short Tricks In Hindi PDF Free Download
- Maths Quantitative Aptitude Book PDF Free Download
- General Science In Hindi PDF
- Maths Notes for Competitive Exams with Average Formulas
Important Maths Formula
- प्राकृतिक संख्या (Natural Numbers) – an – bn = (a – b)(an-1 + an-2 +…+ bn-2a + bn-1)
- सम संख्या (Even) – (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
- विषम संख्या (Odd) – (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
- (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
- घातांक के नियम (Low Of Formula Exponents)
- 1. (am)(an) = am+n
- 2. (ab)m = ambm
- 3. (am)n = amn
- a2 – b2 = (a – b)(a + b)
- (a+b)2 = a2 + 2ab + b2
- a2 + b2 = (a – b)2 + 2ab
- (a – b)2 = a2 – 2ab + b2
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
- (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
- (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
- (a – b)3 = a3 – 3a2b + 3ab2 – b3
- a3 – b3 = (a – b)(a2 + ab + b2)
- a3 + b3 = (a + b)(a2 – ab + b2)
- (a + b)3 = a3 + 3a2b + 3ab2 + b3
- (a – b)3 = a3 – 3a2b + 3ab2 – b3
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
- (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
- a4 – b4 = (a – b)(a + b)(a2 + b2)
- a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)